Activated carbon, also called activated charcoal, is a form of carbon processed to have small, low-volume pores that increase the surface area available for adsorption or chemical reactions.Due to its high degree of microporosity, one gram of activated carbon has a surface area in excess of 3,000 m2 (32,000 sq ft) as determined by gas adsorption. An activation level sufficient for useful application may be obtained solely from high surface area. Further chemical treatment often enhances adsorption properties.
Activated carbon is usually derived from charcoal. When derived from coal it is referred to as activated coal. Activated coke is derived from coke.
Activated carbon is used in methane and hydrogen storage, air purification, solvent recovery, decaffeination, gold purification, metal extraction, water purification, medicine, sewage treatment, air filters in gas masks and respirators, filters in compressed air, teeth whitening, production of hydrogen chloride in dark and many other applications.
Industrial application
One major industrial application involves use of activated carbon in metal finishing for purification of electroplating solutions. For example, it is the main purification technique for removing organic impurities from bright nickel plating solutions. A variety of organic chemicals are added to plating solutions for improving their deposit qualities and for enhancing properties like brightness, smoothness, ductility, etc. Due to passage of direct current and electrolytic reactions of anodic oxidation and cathodic reduction, organic additives generate unwanted breakdown products in solution. Their excessive build up can adversely affect plating quality and physical properties of deposited metal. Activated carbon treatment removes such impurities and restores plating performance to the desired level.
Medical application
Activated carbon is used to treat poisonings and overdoses following oral ingestion. Tablets or capsules of activated carbon are used in many countries as an over-the-counter drug to treat diarrhea, indigestion, and flatulence. However, activated charcoal is ordinarily medically ineffective if poisoning resulted from ingestion of corrosive agents such as alkalis and strong acids, iron, boric acid, lithium, petroleum products, or alcohol. Activated carbon will not prevent these chemicals from being absorbed into the human body.[6] It is on the World Health Organization's List of Essential Medicines, the safest and most effective medicines needed in a health system.
Incorrect application (e.g. into the lungs) results in pulmonary aspiration, which can sometimes be fatal if immediate medical treatment is not initiated.
Environmental applications
Carbon adsorption has numerous applications in removing pollutants from air or water streams both in the field and in industrial processes such as:
Spill cleanup
Groundwater remediation
Drinking water filtration
Air purification
Volatile organic compounds capture from painting, dry cleaning, gasoline dispensing operations, and other processes
Volatile organic compounds recovery (solvent recovery systems, SRU) from flexible packaging, converting, coating, and other processes.
Mercury scrubbing
Activated carbon, often infused with sulfur or iodine, is widely used to trap mercury emissions from coal-fired power stations, medical incinerators, and from natural gas at the wellhead. This carbon is a special product costing more than US$4.00 per kg.
Since it is often not recycled, the mercury-laden activated carbon presents a disposal dilemma. If the activated carbon contains less than 260 ppm mercury, United States federal regulations allow it to be stabilized (for example, trapped in concrete) for landfilling. However, waste containing greater than 260 ppm is considered to be in the high-mercury subcategory and is banned from landfilling (Land-Ban Rule).This material is now accumulating in warehouses and in deep abandoned mines at an estimated rate of 100 tons per year.
Reactivation or the Regeneration of Activated Carbons
The reactivation or the regeneration of activated carbons involves restoring the adsorptive capacity of saturated activated carbon by desorbing adsorbed contaminants on the activated carbon surface.
The most common regeneration technique employed in industrial processes is thermal reactivation. The thermal regeneration process generally follows three steps:
Adsorbent drying at approximately 105 °C (221 °F)
High temperature desorption and decomposition (500–900 °C (932–1,652 °F)) under an inert atmosphere
The heat treatment stage utilises the exothermic nature of adsorption and results in desorption, partial cracking and polymerization of the adsorbed organics. The final step aims to remove charred organic residue formed in the porous structure in the previous stage and re-expose the porous carbon structure regenerating its original surface characteristics. After treatment the adsorption column can be reused.
Current concerns with the high energy/cost nature of thermal regeneration of activated carbon has encouraged research into alternative regeneration methods to reduce the environmental impact of such processes. Though several of the regeneration techniques cited have remained areas of purely academic research, some alternatives to thermal regeneration systems have been employed in industry. Current alternative regeneration methods are:
Chemical and solvent regeneration
Microbial regeneration
Electrochemical regeneration
Ultrasonic regeneration
Wet air oxidation